

Activity 3: Wind Farm Design Calculation student sheet

Name

Activity 3: Wind Farm Design Calculation

student sheet

Greta Thunberg sets your hometown a challenge:

Design a wind farm that will meet the electricity needs of your hometown!

There are **198,000 homes that need electricity** in your hometown. People are using the electricity for lights, TV sets, charging phones, cooking, and many other activities. They will be very unhappy if they don't have electricity.

An area of seabed that has been identified for a potential wind farm. It measures 35km² in total.

Remember all the limits of the area – for example the nearby ancient underwater city that needs to be protected from disturbance. If you try building on a larger area – your neighbours, the whales, fish, skeletons, local swimmers and fisherfolk will be upset and will block your development from going ahead.

Choose from the following wind farm designs - which do you think is best and why?

Look at the options below and decide:

To meet the electricity needs of your hometown (**198,000 homes**) using only the **35km² area** you have available:

Which combination of wind turbine model and number of turbines will you build?

Big turbine model

- Each turbine will power 18,000 homes
- Each turbine needs 3 km² to capture wind best and enable boats and wildlife to pass between them
- a) 20 large turbines
- b) 11 large turbines

Smaller turbine model

• Each turbine will power 9000 homes

- Each turbine needs 2 km² to capture wind best and enable boats and wildlife to pass between them
- c) 22 smaller turbines
- d) 15 smaller turbines

Handy Hint!!

Step 1: Calculate how many homes are powered by each option

Step 2: Check if the total number of turbines can fit within the 35km² area.

THE BIG QUESTION!

Which model would be best for Triton Knoll to build for this area? The Smaller Turbine model or the Larger Turbine Model?

CAN YOU EXPLAIN WHY?